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The number of isomeric cages for the C20n icosahedral fullerenes (Goldberg polyhedra), is 
given by the coefficient ofn -s in the expansion of the Dirichlet generating function 

((s)L[s, X(3)] • 

When this coefficient is even, the cages occur as chiral pairs of point symmetry I; when odd, 
there is one structural isomer of point symmetry Ih, and the other isomers, if any, occur as chiral 
pairs. Asymptotic estimates are given for the number of isomers of each type. 

1. I n t r o d u c t i o n  

The discovery [1] and subsequent isolation [2] of the icosahedral molecule, buck- 
minsterfullerene, has also produced a great deal of interest in possible homolo-  
gues, particularly those of a highly symmetric nature. These are suspected to be 
constituents of  soot and interstellar matter  [3], and include the known C70, as well 
as several postulated series, the "magic numbers"  [4], recently extended to ionic 
species [5], and the icosahedral C20n series [6]. According to [5], stable fullerenes are 
likely to be those polyhedra with 12 pentagonal  faces and the remaining faces hexa- 
gons, and with the following properties: (1) isolated pentagons, (2) large delocalisa- 
tion energies and H O M O - L U M O  gaps, (3) low steric strain. 

Considering the infinite icosahedral series, these will clearly satisfy criteria (1) 
and (3), and when the lower members were considered from a quantum mechanical 
viewpoint, several, such as C2~ - [5] and C240 [6], were indeed adjudged to have high 
stability. The corresponding polyhedra are named after their discoverer, Goldberg 
[7], and, in addition to their application as geodesic domes, their properties have 
been used by Caspar and Klug [8] to describe possible icosahedral virus particles. In 
light of  the growing interest - recently reviewed [9] - in the relationship between 
crystallography and clusters of fivefold symmetry, it is interesting to note that  the 
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rule that n must be expressible in the form (h 2 a t- hk + k2), with h and k integers 
such that h > 0  and k>~O, can be related to similar restrictions applying to the 
indices of points of a hexagonal crystal lattice [7,8,10]. However the underlying 
number theory which applies to integer solutions of the quadratic form 
(h 2 + hk + k 2) appears not to have been recognised in a crystallographic context 
before the work of Senechal [11]. Only very recently [12,13] has there been any sys- 
tematic attempt to introduce number theory methods into crystallography, specifi- 
cally multiplicative arithmetic functions and their Dirichlet generating functions 
[14]. These functions allow ready enumeration, often including asymptotic estima- 
tion, for derivative lattices by their symmetry classes. 

Although the appropriate generating functions are already known in the crystal- 
lographic context [12], the asymptotic properties of these particular arithmetic 
functions have not previously examined. Since the distribution of isomers in the 
title series is very unusual and irregular, the distribution was considered worth this 
more detailed study, especially since it has now ben shown that all fullerene cages 
composed solely of pentagons and hexagons can also be arranged in families, Cnx, 
each with the same isomer distribution as this icosahedral series [15]. It was con- 
cluded that the distribution of isomers could be linked to the properties of the 
Dirichlet generating functions, which are the appropriate tools for enumeration in 
the case of the Goldberg polyhedra, rather than the more familiar power series 
type. As such, it is the first application of these functions to finite molecular sys- 
tems. In fact the reason that they apply is, as we shall see, that the major aspects of 
the enumerations can be carried across directly from a specific lattice-based pro- 
blem. 

2. Derivative lattice enumerat ions  

The way in which a planar map of an icosahedral geodesic some may be 
formed, by placing an arrangement of large equilateral triangles on a net of smaller 
equilateral triangles, has been described by Coxeter [10]. The smaller triangles 
form a regular hexagonal net, and the vertices of the larger triangles must lie on a 
geometrically similar net, which is then a crystallographic derivative lattice [16] of 
the first. This lattice projection construction has since been used to predict fuller- 
ene structures of icosahedral and other symmetries [17]. In the case of icosahedral 
fullerenes, the unit cell of this derivative lattice contains some integer number n gra- 
phite hexagons and therefore 2n carbon atoms, since each carbon atom is shared 
by 3 hexagons. Since the rhomboidal unit cell contains the equivalent of 2 triangu- 
lar icosahedron faces, each face will contain n carbon atoms, and the polyhedron 
as a whole 20n carbon atoms. Thus the problem may be completely transformed 
into an enumeration of the two-dimensional hexagonal derivative lattices. 

We next develop the results of ref. [12], particularly regarding the hexagonal 
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plane groups p6 (No. 16) and p6mm (No. 17). We use Dirichlet generating func- 
tions of  the form 

o o  

F(s) = Ef(n)n-S, 
n=l 

w h e r e f ( n )  is the corresponding arithmetic function, and we define the derivative 
lattice by the index (h, k) in hexagonal co-ordinates of its closest lattice point in the 
sextant h > 0, k >_ 0. the symmetry of the resulting structure will be p6mm if k = 0 
or k = h, otherwise it will be p6. The total number  of such derivative lattices is given 
by {rhex/6}, where rhex is the total number  of representations of n of the form 
(h 2 + hk + k2). {rhex/6} is in turn enumerated by 

F(p6) = ((s)L[s, X(3)], (1) 

where 

((s) = 1 + 2-" + 3 -s + 4-" + 5-" + 6 -s + . . .  

is the Riemann  zeta function, and 

L[s, X(3)] = 1 - 2 -s + 4 -s - 5 -s + 7 -s - 8 -s + ... 

is a Dirichlet  L-function. Their product  becomes 

F ( p 6 ) = l + 3  - s + 4  - s + 2 x 7  - s + 9  - s + 1 2  - s + 2 x  13 - s + . . . ,  

where the coeff ic ientf(n)  of  n -s gives the number  of stereoisomers for that  value 
ofn.  Thus, for n = 1 (h = 1, k --- 0), we have one structure, the dodecahedrane cage 
Cz0, for n = 3, (h = 1,k = 1), one, buckminsterfullerene, for C80, (h = 2 ,k  = 0), 
also one, but for C140, two, corresponding to (2, 1) and (1, 2), which give enantio- 
meric structures. Similarly there are two enantiomers for C260, namely (3, 1) and (1, 
3). The number  of isomers may increase still further; for example, for n = 49 it is 
three, (5, 3), (3, 5) and (7, 0), and for n -- 91, four, namely (9, 1), (8, 3), (3, 8) and 
(1, 9). 

Since F(p6) is a multiplicative function, we may derive a formula for it in terms 
of the contributions of the individual prime numbers.  The Dirichlet  series involved 
here have all prime product  forms; in fact these are 

((s) = H ( 1  _ p - ~ ) - I  
p 

and 

L[s' x( a ) ] = { p=_~l mod3( l + p-S)-' } { p=+~l mod3(1- p-S)-' } " 

Multiplying these two functions together gives a formula in which the prime 3 has 
a unique role: 
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--3--s)l { p=-lmod3 ~ (1 p-2S)-'}{ } F(6) = (1 - p=+lI~mod3(1 _p-S)-2 . (2) 

Detailed examination of this equation shows t ha t : f  (n) is always 1 for n = 3 ~, inde- 
pendent of a; for n = p/~', Pi = -1  mod 3, either f (n)  = 0 o r f (n )  = 1, depending 
on whether/3i is odd or even; and only for n = pJJ, pj = + 1 mod 3, can the value of 
f ( n )  greater than 1, being, in fact , f  (n) = (Tj + 1). Thus, for a general 

n =  3~ { p~=_llImod 3p~/i } { p~=+lI'Imod 3p~' ) , 

using the multiplicative property off(n) ,  the isomer count is either zero when one 
or more/3i's are odd [17a], or 

f ( n ) = 1--[ ('YJ + 1) py=+l mod 3 
when all the/3i's are even. 

Further analysis of the symmetries involved depends on whether or not mirror 
planes occur. Thus whether the plane group symmetry of the hexagonal structure is 
p6 or p6mm, depending on whether the two-dimensional point group of the indivi- 
dual triangle is 3 or 3ml. Similarly the symmetry of the resulting polyhedron is I 
(235) or Ih (m35), depending on whether the individual face belongs to 3 or 3ml. 
Thus we see that the lattice projection method maps plane group p6 into point 
group I, p6mm into Ih. This in turn allows us to apply the results of the correspond- 
ing crystallographic enumerations to distinguish the polyhedra by symmetry 
group, since it is also possible to treat independently the derivative lattices of sym- 
metry p6mm, for which k - 0 or k = h. The function here, also involving a unique 
role for the prime 3, is 

- 3  ) 2 3 -s F(p6mm) = (1 -2~ ~ s ~ ( (  s ) = l +  + 4 - s  + 9-~ + 12-~ + 16-~ + .... (3) 
(1 

Here the series coefficient of n -s is unity where the previous series coefficient was 
odd, and is zero where the previous coefficient was even. This illustrates that the 
function F(p6) counts the cage isomers in such a way that when a coefficient is 
even, the cages occur as chiral pairs of point symmetry I; when odd, there is one 
structural isomer of point symmetry Ih, and the other isomers, if any, occur as 
chiral pairs. 

3. Asymptotic estimation of  the number of  isomers 

In many cases Dirichlet generating functions readily provide asymptotic estima- 
tions of the average value of the corresponding arithmetic function for large values 
of the index n. Methods given by Knopfmacher [18] have already been used to 
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derive such estimates for certain crystallographic objects [13]. These methods yield 
in this case the following. From (20 we get the asymptotic density of the relevant 
solutions ofn = (h 2 + hk + k2), corresponding to all icosahedral cages, to be 

p(I + Ih) = L[1, X(3)] = 3v/~, 

and from (3) we get the corresponding density Oflh isomers 

p ( I h )  = 4 n - 1 / 2 .  

This shows that the total number of isomers remains on average independent of n; 
however, the number of isomers of point symmetry Ih tends to zero, and for large n, 
as we might expect, almost all isomers have point symmetry I. 

The average number of isomers for a specific n we saw was n/3V~. However, 
making use of (2) we see thatf(n) being zero depends only on the prime factors of 
the type -1 rood 3, and, in fact, by using simple combinatorics and geometric ser- 
ies, the fraction of non-zero coefficients proves to be 

I I  ( l + p - 1 ) - l =  ~ P 2 5 11 
p = - I  roods p - - -  od3 p + I = ~ x ~ x ~  

Thus we may identify the other term, 

I ~  ( 1 - P - 1 ) - 1 =  I ~  P 7 13 19 
p=+lmod3 p+lmod3P 1 - 6 x ]-~ x ]-~..., 

as the average magnitude of a non-zero term. However, by rearranging (2) and set- 
ting s = 1, we find 

(1 - P - l ) - 2  = (1 - 3-1){ ~ ( I -p -2)}L[1 ,X(3)]~(1)  • 
p=+l  rood 3 p = - I  mod 3 

Since the first three terms on the right-hand side are finite positive constants, 
(they have values ~, 0.75560.., and n/3 x/~ respectively), and ~(1) is well known to be 
divergent: 

~(1) = 1 + ½ + ½ + ¼ + . . . ,  

Table 1 
Distribution oficosahedral fullerene isomers C20n with n < 100. 

Range ofn Molecular symmetry Total 

Ih I 

Number of  non-zero terms 

1-20 6 6 12 9 
21-40 3 10 13 8 
41-60 2 8 10 5 
61-80 2 12 14 8 
81-100 2 8 10 5 
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then the left-hand side also diverges. This means that the average magnitude of  a 
non-zero term increases without limit, this in turn can only occur, given a fixed 
overall average value of n/3v/3,  if the set of non-zero terms in the series has asymp- 
totic measure zero. 

Thus, as n increases, the values ofn  for which isomers can exist at all become pro- 
gressively scarcer, while the average number of  isomers, where they do occur, con- 
tinues to increase. All of  these trends are illustrated in table 1, which shows the 
statistics for n ~< 100, grouped in twenties; i.e. p(I + Ih) fluctuates around its aver- 
age value of  ~x/3x/~ = 0.60460.., while p(Ih) decreases, and the average non-zero 
number of  isomers increases, with increasing n. 
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